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Abstract. We study the properties of the momentum space triple pomeron vertex in perturbative QCD. Par-
ticular attention is given to the collinear limit where the transverse momenta on one side of the vertex are
much larger than on the other side. We also comment on the kernels in the non-linear evolution equations.

1 Introduction

The triple pomeron vertex (TPV) in perturbative
QCD [1–4] has attracted significant attention in recent
years. It is derived from the 2→ 4 transition vertex in
QCD reggeon field theory, which represents the high en-
ergy description of QCD. In recent years particular interest
has come from studies of the non-linear evolution equa-
tions, e.g. the Balitsky–Kovchegov equation [3–8], where
the non-linearity is given by the TPV. More recently, also
generalizations of the non-linear evolution have been con-
sidered [9–12] that contain pomeron loops [13]. Again, the
TPV plays a central role in these investigations. Whereas
in many studies and applications it is convenient to use the
coordinate representation, it is important to understand
the structure also in momentum space.
In this paper we will investigate some aspects of the

TPV, starting from the momentum space representation
of the 2→ 4 gluon transition vertex, from which the TPV
vertex has originally been derived [1, 2]. Many of the stud-
ies of the non-linear evolution equations have been done
in the context of deep inelastic scattering in which a vir-
tual photon scatters off a single nucleon or off a nucleus.
In both cases the momentum scale of the photon is much
larger than the typical scale of the hadron or nucleus, i.e.
one is dealing with asymmetric momentum configurations.
As a first step of investigating the TPV, therefore, we will
focus on investigating the limit where the transverse mo-
menta are strongly ordered.We also review and discuss the
non-linear evolution equation that has been proposed in
the literature [14, 15], and we comment on the use of a twist
expansion in the low-x limit.
The paper is organized as follows. In the Sect. 2 we de-

fine the setup of our calculation, and we construct the elas-
tic amplitude for photon–photon scattering with exchange
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of a four-gluon BKP state. In the large-Nc limit, this re-
duces to photon–photon scattering with the exchange of
a pomeron loop. In the remaining part of Sect. 2 we de-
fine the Mellin transform of a pomeron loop and specify
our use of ‘collinear’ and ‘anticollinear limits’. In Sect. 3
we study the collinear limit of the triple pomeron vertex
in the large Nc limit. Section 4 contains results of the an-
alysis of the anticollinear limit in the large Nc limit. In
Sect. 5 we extend the analysis to finite Nc. In Sect. 6 we
derive a hierarchy of non-linear evolution equations that
describe the interaction of a photon with a hadronic tar-
get. We also show that, in the mean field approximation,
we obtain a non-linear evolution equation for the uninte-
grated gluon density. Section 7 contains a few comments
on the relation of this equation with other non-linear evo-
lution equations described in the literature. We end the
paper with a few conclusions.

2 The 2→ 4 gluon transition vertex

The LO momentum space expression for the 2→ 4 gluon
transition vertex has been derived in connection with the
diffractive dissociation of the virtual photon in deep in-
elastic electron–proton scattering [2]. More precisely, the
process γ∗+ q→ (qq̄+ngluons)+ q has been investigated
in the triple Regge limit. The resulting vertex consists of
three pieces (we follow the notation of [17]):

Va
′
1a
′
2;a1a2a3a4(κ1,κ2;k1,k2,k3,k4) =
√
2πδa

′
1a
′
2

N2c −1

[
δa1a2δa3a4V (κ1,κ2,k1,k2,k3,k4)

+ δa1a3δa2a4V (κ1,κ2,k1,k3,k2,k4)

+ δa1a4δa2a3V (κ1,κ2,k1,k4,k2,k3)
]
, (1)
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Fig. 1. Examples of diagrams that contribute to the 2→ 4
gluon transition vertex (wavy vertical lines represent reggeized
gluons): a real emission; b a disconnected contribution

where κ1+κ2 = k1+k2+k3+k4 = q, and the subscripts
a′i and ai refer to the color degrees of freedom of the
reggeized gluons. It is convenient to express the ‘basic ver-
tex function’ V (κ1,κ2,k1,k2,k3,k4) in terms of another
function G(κ1,κ2,k1,k2,k3):

V (κ1,κ2,k1,k2,k3,k4)

=
1

2
g4[G(κ1,κ2,k1,k2+k3,k4)

+G(κ1,κ2,k2,k1+k3,k4)+G(κ1,κ2,k1,k2+k4,k3)

+G(κ1,κ2,k2,k1+k4,k3)−G(κ1,κ2,k1+k2,k3,k4)

−G(κ1,κ2,k1+k2,k4,k3)−G(κ1,κ2,k1,k2,k3+k4)

−G(κ1,κ2,k2,k1,k3+k4)

+G(κ1,κ2,k1+k2,−,k3+k4)] . (2)

This function G(κ1,κ2,k1,k2,k3) [19, 22] generalizes the
G function introduced in [2] to the non-forward direction.
This function can again be split into two pieces:

G(κ1,κ2,k1,k2,k3) =G1(κ1,κ2,k1,k2,k3)

+G2(κ1,κ2,k1,k2,k3) , (3)

where the first part contains the ‘connected contributions’
(also: ‘real contributions’):

G1(κ1,κ2,k1,k2,k3) =
(k2+k3)

2κ21
(κ1−k1)2

+
(k1+k2)

2κ22
(κ2−k3)2

−
k22κ

2
1κ
2
2

(κ1−k1)2(κ2−k3)2

− (k1+k2+k3)
2 , (4)

and the second one takes care of the disconnected (‘vir-
tual’) pieces:

g2G2(κ1,κ2,k1,k2,k3) =

−
κ21κ

2
2

Nc

(
[ω(k2)−ω(k2+k3)]δ

(2)(κ1−k1)

+ [ω(k2)−ω(k1+k2)]δ
(2)(κ1−k1−k2)

)
. (5)

Here ω(k) denotes the trajectory function:

ω(k) =−Ncg
2

∫
d2l

(2π)3
k2

l2+(k− l)2
1

(k− l)2
. (6)

The vertex (1) is completely symmetric under permutation
of the four gluons. It is infrared finite, it has been shown
to be invariant under Möbius transformations [18], and it
vanishes when κi or ki goes to zero.
This vertex can be used to construct, in reggeon field

theory, the selfenergy Σ, of the BFKL Green’s function
(Fig. 2). In the lowest order contribution to Σ, we have
a BKP state between two 2→ 4 vertices, which contains all
pairwise interactions of four reggeized t-channel gluons. Its
Green’s function satisfies the following evolution equation:

(ω−ω(k1)−ω(k2)−ω(k3)−ω(k4))

×G
(4){ai},{a

′
i}

ω ({ki}, {k
′
i})

= G(4)0{ai},{a
′
i}({ki}, {k

′
i})

+
∑

(ij)

1

k2ik
2
j

K
{a}→{b}
2→2 ⊗G

(4){bi}{a
′
i}

ω ({ki}{k
′
i}) ,

(7)

where we have used the shorthand notation {ki} =
(k1,k2,k3,k4) etc. The sum extends over all pairs (ij)

of gluons, the kernel K
{a}→{b}
2→2 includes the color tensor

faibicfajbjc:

K
{ai}→{bi}
2→2 = g2fb1a1cfca2b2

×

[
r2−

k21(k− r)
2

(k1−k)2
−
k2(k1− r)2

(k1−k)2

]
, (8)

and the convolution symbol⊗ stands for
∫
dk2

(2π)3
. The inho-

mogeneous term has the form

δ(2)
(∑

ki−
∑
k′i

)
G(4)0{ai}{a

′
i}({ki}, {k

′
i}) =

(2π)9
4∏

1

δaia′i
δ(2)(ki−k′i)

k2i
. (9)

Let us briefly explain how we obtain the correct normal-
ization factors. We consider the scattering amplitude of
quark–quark scattering (Fig. 3b), which, in the center, con-
tains the insertion of four reggeized t-channel gluons. We
begin with the diffractive cut (Fig. 4a): the one-loop ampli-
tude on the l.h.s. of the cutting line will be assumed to have
an even signature exchange and, hence, to be equal (up to
a factor i) to its energy discontinuity. As a result, we start
fromFig. 3b with three cutting lines: all horizontal lines are
on mass-shell. To distribute the color and phase space fac-
tors we proceed as follows: using the on-shell conditions,
we can perform 8 out of the 10 longitudinal Sudakov inte-
grations; the two remaining longitudinal variables denote
the rapidity of the two produced gluons in the central re-
gion, which, for the moment, we keep fixed. For each closed
loop, we are left with an integral

∫
d2k/(2π)3. For each

BFKL rung in Fig. 3a we have the kernel from (8), for
each 2→ 4 vertex in Fig. 3b we have the 2→ 4 vertex (1)
(divided by the additional factor 1/

√
2). Having in mind

that our discussion should be applicable also to more gen-
eral diagrams, we retain, for the moment, the general color
structure in (8) and in (1). When deriving, from Fig. 3b,
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Fig. 2. Contributions to the elastic scattering of two virtual photons that contain the 2→ 4 gluon vertex (dark blobs represent
Green’s functions of reggeized gluons): a the four gluon BKP state; b a pomeron loop

Fig. 3. Quark–quark scattering in the high energy limit of
QCD (color singlet exchange): a two loop correction in the
ladder approximation; b diagrams with two triple pomeron ver-
tices (grey blobs)

the diffractive cut in Fig. 4a, we write, for each 2 gluon ex-
change on the l.h.s. and on the r.h.s. of the cutting line
a statistic factor 1/2!; from the compensating factor 4 we
absorb

√
2 into each of the 2→ 4 vertices. As a result, we

have, in addition to all other color and phase space fac-
tors, the statistic factors 2/(2!)2. Invoking now the AGK
rules [20, 21], applied to the exchange of four (odd signa-

Fig. 4. Different cuts

ture) reggeized gluons, the other contributions in Fig. 4b
and c, the statistic factors become

2

(
1

2!2!
−
2

3!

)
=−

4

4!
. (10)

Finally, we use our result for quark–quark scattering
and return to the process of our interest, photon–photon
scattering. Replacing the quark impact factors by photon
impact factors, inserting BFKL rungs above and below the
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2→ 4 vertices, and inserting pairwise interactions between
the four gluon lines in the center, we arrive at

A(s, t) = 2isπ

∫ Y

0

dY3

∫ Y

0

dY2

∫ Y

0

dY1δ(Y −Y1−Y2−Y3)

×

∫
d2κ

(2π)3
d2κ1
(2π)3

φa
′
1a
′
2(κ,q−κ)

×G(2)a
′
1a
′
2;a
′′
1a
′′
2 (Y3;κ,κ1,q)

×
−4

4!

∫ 4∏

i=1

(
d2ki
(2π)3

)
(2π)3δ(2)

(∑
ki−q

)

×

∫ 4∏

i=1

(
d2k′i
(2π)3

)
(2π)3δ(2)

(∑
k′i−q

)

×Va
′′
1a
′′
2 ;a1a2a3a4(κ1,q−κ1;k1,k2,k3,k4)

×G(4);{ai}{bi}(Y2; {ki}{k
′
i})

×

∫
d2κ′

(2π)3
d2κ′1
(2π)3

×Vb1b2b3b4;b
′′
1 b
′′
2 (k′1,k

′
2,k

′
3,k

′
4;κ

′
1,q−κ

′
1)

×G(2)b
′′
1 b
′′
2 ,b
′
1b
′
2(Y1;κ

′
1,κ

′,q)φb
′
1b
′
2(κ′,q−κ′) ,

(11)

where the minus sign in the fourth line indicates that
the four-gluon insertion into the two-gluon Green’s func-
tion represents a negative correction to the simple ladder
amplitude. Here s is the squared center of mass energy,
Y = ln(s/s0) is the total rapidity, Y1, Y2 and Y3 are the

rapidity intervals as depicted in Fig. 2, φa
′
1a
′
2 denotes the

impact factor of the virtual photon, G
(2)a′1a

′
2;a
′′
1a
′′
2

ω is the
BFKL Green’s function that satisfies the BFKL integral
equation:

(ω−ω(k1)−ω(k2))G
(2)a1a2b1b2
ω ({ki}, {k

′
i}) =

G(2)0a1a2b1b2({ki}, {k
′
i})

+
1

k21k
2
2

K
{a}→{b}
2→2 ⊗G(2)a1a2b1b2ω ({ki}{k

′
i}) , (12)

with an inhomogeneous term analogous to (9). The statis-
tics factor 14! reflects the symmetry of the expression under
the interchange of the four gluons. In (11), the selfenergy is
defined by lines 4–9, i.e. the convolution of the two 2→ 4
vertices with the BKP Green’s function between them. As
a convenient simplification, we approximate the four-gluon
state by two non-interacting color singlet ladders (Fig. 2b):
this configuration represents a ‘pomeron loop’. It is easy to
find the combinatorial factor of a system where two pairs
of gluons form bound states. We have three possibilities of
pairing two gluons to form bound states out of four gluons.
This yields the factor 1/2!. In this configuration we have
a pomeron loop topology. The result reads:

A(s, t) = 2isπ

∫ Y

0

dY3

∫ Y

0

dY2

∫ Y

0

dY1δ(Y −Y1−Y2−Y3)

×

∫
d2κ

(2π)3
d2κ1
(2π)3

φa
′
1a
′
2(κ,q−κ)

×G(2)a
′
1a
′
2,a
′′
1a
′′
2 (Y3;κ,κ1,q)

×
−1

2!

∫
d2r

(2π)3

∫
d2k1
(2π)3

d2k3
(2π)3

×Va
′′
1a
′′
2 ;a1a2a3a4(κ1,q−κ1;

k1,−k1− r,k3,−k3+ r+q)

×

∫
d2k′1
(2π)3

d2k′3
(2π)3

(PG)(2)a1a2b1b2(Y2;k1,k
′
1, r)

× (PG)(2)a3a4b3b4(Y2;k3,k
′
3, r+q)

×

∫
d2κ′1
(2π)3

d2κ′

(2π)3

×Vb1b2b3b4;b
′′
1 b
′′
2 (k′1,−k

′
1− r,k

′
3,−k

′
3+ r+q;

κ′1,q−κ
′
1)

×G(2)b
′′
1 b
′′
2 ,b
′
1b
′
2(Y1;κ

′
1,κ

′,q)φb
′
1b
′
2(κ′,q−κ′) ,

(13)

where

P a1a2b1b2 =
δa1a2δb1b2

N2c −1
(14)

is the color singlet projector. These projectors act on the
color tensors of the 2→ 4 vertices, turning the pairs of color
labels (a1a2), (b1b2), (a3a4) and (b3b4) into color singlets.
Comparison with (1) shows that this projection operator,
when acting on the first term, leads to a factor 1, whereas
the remaining terms come with the weight factor 1

N2c−1
: in

comparison with the first term, they are color suppressed.
This large-Nc approximation turns the 2→ 4 vertices into
triple pomeron vertices (TVP).
In the following we shall focus on the pomeron loop (13)

and investigate, for zero total momentum transfer, q= 0,
the kinematic limit in which the momentum scale of the
upper photon is much larger than the lower one. This im-
plies that, at the upper TPV, the momentum from above,
κ1, is larger than the momenta from below, k1 and k3,
and the loop momentum r (‘collinear limit’). Conversely,
for the lower TPV we have the opposite situation: the
momenta k′1, k

′
3, and r are larger than κ

′
1 (‘anticollinear

limit’). Let us become a bit more formal. We expand the
amplitude of Fig. 2 in powers ofQ20/Q

2
1 (‘twist expansion’).

The object of our interest is the selfenergy of the pomeron
Green’s function, Σ(κ1,κ

′
1). In (13), Σ(κ1,κ

′
1) is defined

to represent the lines 4–9, i.e. the convolution of the two
TPVs with the two BFKL Green functions between them.
It has the dimension k2, and it is convenient to define the

dimensionless object Σ̃
(
κ1
κ′1

)
=
Σ(κ1,κ

′
1)√

κ21κ
′2
1

with the Mellin

transform:

Σ̃(γ) =

∫ ∞

0

dk2Σ̃(k2)(k2)γ−1 . (15)

The inverse Mellin transform reads

Σ̃(k2) =

∫

C

dγ

2πi
(k2)−γΣ̃(γ) , (16)

where k2 =
κ′21
κ21
, and the contour crosses the real axis be-

tween −1 and 0 (see Fig. 5). Our analysis will then reduce
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Fig. 5. Singularities in the γ plane

to the study of the singularities of the function Σ̃(γ). The
twist expansion corresponds to the analysis of the poles lo-
cated to the left of the contour in the γ plane: the pole at
γ =−1 is the leading twist pole, the pole at γ =−2 belongs
to twist 4, and so on. As we have already said before, for
the upper TPV in Fig. 2, the analysis of this twist expan-
sion requires the ‘collinear limit’, for the lower TVP the
‘anticollinear’ one.

3 The collinear limit

In this section we are going to study the collinear limit of
the TPV. The ordering of the transverse momenta is the
following: |κ1| ≡ |k| � |k1|, |k2|, |k3|, |k4|. We therefore ex-
pand in powers of |k1|/|k|, |k2|/|k|, |k3|/|k| and |k4|/|k|.
In our investigations we will be interested in attaching
color singlet objects to the vertex, and we project (1) onto
the color singlets. In the limit Nc→∞ we obtain:

P a1a2b1b2P a3a4b3b4Va
′
1a
′
2;a1a2a3a4(k,−k;k1,k2,k3,k4)

= δa
′
1,a
′
2δb1,b2δb3,b4

√
2π

N2c −1

×

[
V (1, 2, 3, 4)+

1

N2c −1
(V (1, 3, 2, 4)+V (1, 4, 2, 3))

]
,

(17)

where V (1, 2, 3, 4) ≡ V (k,−k;k1,k2,k3,k4). The first
term will be denoted by

V{a
′}{b}

LONc
(1, 2, 3, 4) = δa

′
1,a
′
2δb1,b2δb3,b4

√
2π

N2c −1
V (1, 2, 3, 4) ,

(18)

the second and third ones by

V{a
′}{b}

subNc
(1, 3, 2, 4) = δa

′
1,a
′
2δb1,b2δb3,b4

√
2π

(
N2c −1

)2 V (1, 3, 2, 4)

(19)

etc.

3.1 The real part

Let us begin the analysis by expanding the real part of
the G function (3) in the collinear limit. As we are going
to limit ourselves to the forward case we use the simpli-
fied notation G(k,−k;k1,−k1−k3,k3) ≡ G(k1,k3) and
V (k,−k;k1,k2,k3,k4) ≡ V (k1,k2,k3,k4). With these
definitions the G1 function (4) reads

G1(k1,k3) =
k21k

2

(k−k1)2
+
k23k

2

(k+k3)2
−

(k1+k3)
2k4

(k−k1)2(k+k3)2
.

(20)

In the collinear limit the momenta of the outgoing gluons
satisfy the conditions |k1| � |k|, |k3| � |k|. Performing the
expansion in |ki|/|k| up to fourth order terms we obtain

G1(k1,k3) = 2k
2

[
−
k1 ·k3
k2

−
k1 ·k

k4
(
k23+2k1 ·k3

)

+
k3 ·k

k4
(
k21+2k1 ·k3

)

+

(
k21
k2
−

(
2k1 ·k

k2

)2)(
k23+2k1 ·k3

)

+

(
k23
k2
−

(
2k3 ·k

k2

)2)(
k21+2k1 ·k3

)

+(k1+k3)
2 2k ·k1
k2

2k ·k3
k2

+ . . .

]
. (21)

The first term is the twist-2 contribution:

G1(k1,k3)
τ=2 =−2k2

k1 ·k3
k2

. (22)

With analogous expressions for the other G1 functions
in (2) we find that the sum of all twist-2 pieces vanishes.
The next two terms on the r.h.s. of (21) vanish after aver-
aging over the azimuthal angle of k. Finally we are left with
the twist-4 piece. After averaging over the direction of k we
find

G1(k1,k3)
τ=4 = 2k2

[
2(k1 ·k3)2−k21k

2
3

k4

]
. (23)

From (2) we obtain for the twist-4 piece of the real part of
the TPV:

Vr{a
′}{b}

LONc
(k1,k2,k3,k4)

τ=4 = δa
′
1,a
′
2δb1,b2δb3,b4

√
2π

N2c −1

g4

2

×2k2
4(−k1 ·k2k3 ·k4+k1 ·k4k2 ·k3+k1 ·k3k2 ·k4)

k4
,

(24)

where the superscript r stands for real emission. This ex-
pression is the master formula for the twist-4 contribution.
In the next step we are going to attach BFKL ladders to

the pairs of gluons (k1,k2) and (k3,k4). Since the presence
of a momentum transfer across the BFKL ladder would
cause the loss of a logarithmic contribution, we limit our-
selves to the forward directions:

k1 =−k2 , k3 =−k4 . (25)
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Putting k1 = l, k2 =−l, k3 =m and k4 =−m we obtain

V
r{a′}{b}
LONc

(l,−l,m,−m)τ=4= δa
′
1,a
′
2δb1,b2δb3,b4

√
2π

N2c −1

g4

2

×2k2
4(2(l ·m)2− l2m2)

k4
.

(26)

Now we multiply the vertex by propagators for the lower
gluon lines and convolute with the 2→ 2 transition ker-
nels (8). Our goal is to find, from the convolutions of the
vertex with propagators and kernels, the maximal number
of logarithms. To do that we should act on the twist-4 con-
tribution of the vertex with the twist-4 evolution operator,
which, in our case, is the product of two BFKL kernels in
the twist-2 approximation. Let us compute the collinear
approximation to the BFKL kernels, which, when convo-
luted with the TPV, will give a logarithmic integral. The
expression for the emission part of the BFKL kernel is

K(q1,q2;k1,k2)

=−Ncg
2

[
(k1+k2)

2−
q22k

2
1

(k2−q2)2
−

q21k
2
2

(k1−q1)2

]
.

(27)

The factor −Nc replaces the color tensors in (8), since we
have projected on the color singlet state. Assuming zero
momentum transfer and q21� k

2
2 we get

K = g2Nc2k
2
1 , (28)

where, in order to simplify the notation, we have skipped
the arguments of the kernelK. Using this approximation in
the formula for Fig. 6a, we get the following expression for
the convolution of the vertex with two BFKL kernels (one
kernel for each two-gluon pair below the vertex):

(KK)⊗V
r{a′}{b}
LONc

τ=4

= δa
′
1,a
′
2δb1,b2δb3,b4

√
2π

N2c −1
N2c 2k

2 g
8

2

×

∫ k2

k20

d2l

(2π)3

∫ k2

k20

d2m

(2π)3
2k20
l4
2k20
m4
4(2(l ·m)2− l2m2)

k4
= 0 ,

(29)

where k0 is the lowest momentum scale, which we do not
specify at present. We notice that the integrals of l andm

Fig. 6. a The TPV with two BFKL interactions attached to it;
b the TPV with gluon ladders

are logarithmic, but – which is most striking – the angular
integral over the angle between l and m renders the triple
pomeron vertex to vanish. It is straightforward to iterate
the convolution with BFKL kernels (Fig. 6b), and, as a re-
sult, we arrive at the conclusion that – after averaging over
the azimuthal angles – the twist-4 part of the TPV vertex
gives a zero contribution.

3.2 The virtual part

So far we have investigated contributions coming from
the real part of the vertex. What remains are the discon-
nected parts. In order to investigate logarithmic contri-
butions of the virtual pieces we have to convolute them
with an impact factor at the upper end of Fig. 1b. To
deal with infrared finite quantities it is convenient to
work with the impact factor of the photon. The function
G2(k1,k2+k4,k3) = G2(k1,k3) (5) in the forward direc-
tion reads

G2(k1,k3) =−k
4 1

8π2

(
ln

|k1|2

|k1+k3|2
δ(2)(k1−k)

+ ln
|k3|2

|k1+k3|2
δ(2)(k3+k)

)
. (30)

The photon impact factor (for transversely polarized pho-
tons) has the form [28, 29]

φa′1a
′
2
(k, Q) = δa

′
1a
′
2αsαem

∑

q

e2q

×

∫ 1

0

dτ dρ
[ρ2− (1−ρ)2][τ2− (1− τ)2]k2

ρ(1−ρ)Q2+ τ(1− τ)k2
,

(31)

where Q2 and k2 denote the (negative) photon and gluon
virtualities, respectively. In this expression ρ denotes the
longitudinal component of the quark loop momentum (in
the Sudakov decomposition), while the second integration
variable τ is a Feynman parameter. For our investigations
we are interested in the twist expansion. To perform the
twist expansion of the impact factor, one has to perform
the Mellin transform with respect to k2/Q2. With the
Mellin transform (15) one finds

φa′1a
′
2
(k, Q) =

∫
dγ

2πi

(
k2

Q2

)−γ
φa′1a

′
2
(γ) , (32)

and we obtain:

φa′1a
′
2
(γ) = δa

′
1a
′
2C
Γ (3+γ)
5
2 +γ

Γ (1+γ)

1+γ

Γ (−γ)

−γ

Γ (−γ+2)

Γ
(
−γ+ 32

) .

(33)

Turning to Fig. 2b, we are interested in the following order-
ing of momenta: |Q1| � |κ| � |κ′| � |Q0|. To analyze the
twist-4 term of this kinematic region we need, for the upper
impact factor, the twist-4 term. Closing, in (32), the con-
tour of the γ integration to the left we obtain the following
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collinear expansion of the photon impact factor:

φa′1a
′
2
(κ, Q1) = δ

a′1a
′
2φ(κ, Q1)

= δa
′
1a
′
2C

{[
14

9
−
4

3
ln

(
κ2

Q21

)]
κ2

Q21

+
2

5

(
κ2

Q21

)2
+ . . .

}
, (34)

where C =
∑
f e
2
fαsαem. As is well known, the twist-4 term

has no logarithmic enhancement.
For later purposes we also list the results for the lower

impact factor: we close the contour to the right and find:

φa′1a
′
2
(κ′, Q0) = δ

a′1a
′
2φ(κ′, Q0)

= δa
′
1a
′
2C

{[
14

9
−
4

3
ln

(
Q20
κ′2

)]

+
2

5

Q20
κ2
+ . . .

}

. (35)

For our twist-4 analysis of Fig. 2b we will need the second
term on the r.h.s.
Returning to the upper impact factor and concentrat-

ing on the twist-4 piece, we now easily see, by simply count-
ing powers of momenta, that the virtual contributions of
the TPV cannot contribute to the maximal power of log-
arithms. Namely, beginning with the impact factor above
the TVP, we have the power k4, which cancels the two-
gluon propagators attached to the impact factor. From the
G2 functions we find another power, k

4, which, through
the δ functions, turns into m4, l4, or (m± l)4. When di-
viding the region of integration into the two parts m� l
and l�m, the terms with (m± l)4 turn into l4 orm4. Be-
low the TPV we have the pairs of propagators, 1/m4, and
1/l4, and there is nom (or l)-dependent contribution from
the BFKL kernels. Combining these momentum factors,
we therefore obtain only integrals of the form

∫
d2l

l4

∫
d2m

m4
l4

or
∫
d2l

l4

∫
d2m

m4
m4 ,

i.e. none of the integrals is logarithmic (this argument re-
mains unaffected if we include the logarithms from the G2
functions). Hence, within the leading-log approximation,
also the virtual part of the TPV is zero.
Let us emphasize that our search for the ‘maximal

power of transverse logs’ is exactly what is required for
a consistent twist-4 analysis. In order to obtain this max-
imal power (i.e. one power for each transverse momentum
loop integral), we had to start at the upper impact fac-
tor with the twist-4 term. Including a BFKL ladder be-
tween the impact factor and the TPV forces us to take
also the twist-4 approximation of the kernel, i.e. instead
of the leading twist approximation in (27), terms of the

order O
(
k21
k21
q21

)
. Next, at the TPV we searched for terms

of the order m
2l2

k2
, and, finally, for the two BFKL kernels

below the TPV, again the twist-2 approximation (27). It is
only this sequence of approximations that provides one log-
arithm for each loop, i.e. otherwise we loose one (or more)
powers of logarithmic enhancements. Our result then says
that one coefficient in this sequence of terms, namely the
TPV, vanishes and thus makes the twist-4 term in the twist
expansion (in the leading-log approximation) disappear.

3.3 Generalization to all higher twists

The main result of the previous subsections – the absence
of collinear logarithms in the case of angular averaged
BFKL ladders – can be generalized to all orders of pow-
ers of 1/Q2. We return to the function V in (2), which is
expressed in terms of the functions G1 and G2, and we
average over the angles ofm and l. FirstG1:

G1(l,m) =
k2l2

(k− l)2
+
k2m2

(k+m)2
−

k4(l+m)2

(k− l)2(k+m)2
.

(36)

Let us denote the first term in this formula byA, the second
one by B and the third one by C, the angle between l and
m by α, and the angle between m and k by β (the angle
between l and k then equals 2π−α−β). For the integrals
over α and β we find

IA =
1

(2π)2

∫ 2π

0

dα

∫ 2π

0

dβA=
k2l2

|l2−k2|
(37)

and

IB =
1

(2π)2

∫ 2π

0

dα

∫ 2π

0

dβB =
k2m2

|m2−k2|
. (38)

To compute the integral over C we split C = C1+C2+C3
into three pieces. The corresponding integrals are

IC1 =
1

(2π)2

∫ 2π

0

dαdβ

×
k4l2

(k2−2|l||k| cos(α+β)+ l2)(k2+2|m||k| cosβ+m2)
,

(39)

IC2 =
1

(2π)2

∫ 2π

0

dαdβ

×
2k4|l||m| cosα

(k2−2|l||k| cos(α+β)+ l2)(k2+2|m||k| cosβ+m2)
,

(40)

IC3 =
1

(2π)2

∫ 2π

0

dαdβ

×
k4m2

(k2−2|l||k| cos(α+β)+ l2)(k2+2|m||k| cosβ+m2)
.

(41)
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The results of the integration are

IC1 =
l2k4

|l2−k2| |m2−k2|
, (42)

IC2 =
−8l2m2k6

|l2−k2||m2−k2|(l2+k2+ |l2−k2|)

×
1

(m2+k2+ |m2−k2|)
, (43)

IC3 =
m2k4

|l2−k2| |m2−k2|
. (44)

The total contribution is given by summing up IA, IB , IC1 ,
IC2 and IC3 The result can greatly be simplified if we con-
sider special situations. For instance, if k2 � l2,m2, we
may drop the absolute value signs. Adding all terms we ob-
tain:

∑

A,...,C3

I =
2l2m2k2−2l2k4−2m2k4+2k6

(l2−k2)(m2−k2)
= 2k2. (45)

In all other cases, k2� l2,m2,m2� k2� l2, or l2� k2�
m2, the sum of all terms gives zero. Therefore the final re-
sult can be simply written as

1

(2π)2

∫ 2π

0

dαdβG1(l,m) = 2k
2θ(l2−k2)θ(m2−k2),

(46)

where the factor 1/(2π)2 comes from averaging.
Let us now perform the angular averaging of the discon-

nected pieces of the G(l,m) function. We have

G2(l,m) =−k
4 1

8π2

(
ln

l2

(l+m)2
δ(2)(l−k)

+ ln
m2

(l+m)2
δ(2)(m−k)

)
. (47)

To compute the integral over the angles we split the re-
gion of integration. In the case when |m|� |l| the first term
gives

ID =
1

(2π)2

∫ 2π

0

dαdβ ln
l2

l2+m2+2|l||m| cosα
= ln

l2

m2
,

(48)

whereas the second one vanishes. In the case when |l| �
|m| we obtain zero from the first term and

ID =
1

(2π)2

∫ 2π

0

dαdβ ln
m2

l2+m2+2|l||m| cosα
= ln

m2

l2

(49)

from the second one. We combine the two cases in the fol-
lowing way:

G2(l,m) =−k
4 1

8π2

(
ln
l2

m2
θ(m2− l2)δ(2)(l−k)

+ ln
m2

l2
θ(l2−m2)δ(2)(m−k)

)
. (50)

Putting all pieces together and including the remain-
ing G functions we arrive at the angular averaged form
of V :

1

(2π)2

∫ 2π

0

dαdβV (k,−k; l,−l,m,−m)

= 4
g4

2

[
2k2θ(l2−k2)θ(m2−k2)

+
1

8π2

(
ln

(
l2

m2

)
δ(2)(l−k)θ(m2− l2)

+ ln

(
m2

l2

)
δ(2)(m−k)θ(l2−m2)

)]
. (51)

The presence of the θ functions forbids all collinear con-
figurations, i.e. there is no expansion in inverse powers of
k2. The physical meaning of this result is the following:
if the two pomerons entering the vertex from below have
smaller momenta than the pomeron from above, they can-
not resolve it and cannot merge because they do not feel
‘color’, and the vertex vanishes.1 In the language of a twist
expansion, our result states that, in the leading-log approx-
imation, not only twist-4, but all higher twist terms are
zero, provided we restrict ourselves to the large-Nc limit,
and we use only the BFKL ladders with conformal spin
zero below the TPV.

4 The anticollinear limit

4.1 Real part

Let us now investigate the anticollinear limit of the 2→ 4
vertex (Fig. 7). In contrast to the collinear limit in which
the BFKL ladders below the vertex had to be in the for-
ward direction, the anticollinear configuration allows for
non-zero momentum transfer across the BFKL ladders
above the vertex. The momentum transfer here, as we will
see, does not lead to a loss of a logarithm.We are interested
in the limit |w| � |w1|, |w2|, |w3|, |w4|. To study the real
emission part of the TPV it is convenient to rewrite the G1
function in the form

G1(w1,w2+w3,w4) =

w2

[
1

(
1−2w·w1

w21
+ w

2

w21

) +
1

(
1+2w·w4

w24
+ w

2

w24

)

−w2
(w1+w4)

2

w21w
2
4

1
(
1−2w·w1

w21
+ w

2

w21

)(
1+2w·w4

w24
+ w

2

w24

)

]

.

(52)

Here we have used the momentum conservation
∑
iwi = 0.

The expansion parameters are |w|/|w1| and |w|/|w3|. Per-

1 A similar result has first been noticed in [33]: however, the
disconnected pieces have been missed. The result (51) agrees
with the form given in [2].
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forming the expansion we obtain up to second order

G1(w1,w2+w3,w4)

=w2
[
2+2

w ·w1
w21

−2
w ·w4
w24

−2
w2

w21
−2
w2

w24

−2w2
w1 ·w4
w21w

2
4

+

(
2
w ·w1
w21

)2
+

(
2
w ·w4
w24

)2
+ . . .

]
.

(53)

Using (4) we obtain for the leading term of the TPV

Vr{a
′}

LONc
(p,−p− r,q,−q+ r)leading

= δa
′
1,a
′
2δb1,b2δb3,b4

√
2π

N2c −1

g4

2
2w2 . (54)

One easily sees that this term does not provide logarithms
in the momentum scale. The subsequent terms in (53) van-
ish after averaging over the angle ofw. Therefore, in order
to get, after convolution with BFKL kernels in the subsys-
tems (12) and (34), the required logarithmic contribution
we need to consider, in (53), terms of higher order. After
averaging over the angle of w, and after summing, in (4),
over all the G1 functions, the resulting contribution is the
following:

V
r{a′}
LONc

(w1,w2,w3,w4)
τ=−2

= δa
′
1,a
′
2δb1,b2δb3,b4

√
2π

N2c −1
g4w4

×

[
−
w1 ·w3
w21w

2
3

−
w2 ·w3
w22w

2
3

−
w1 ·w4
w21w

2
4

−
w2 ·w4
w22w

2
4

−
w1 · (w1+w2)

w21(w1+w2)
2
−
w2 · (w1+w2)

w22(w1+w2)
2
−
w3 · (w3+w4)

w23(w3+w4)
2

−
w4 · (w3+w4)

w24(w3+w4)
2
−
(w1+w2) · (w3+w4)

(w1+w2)2(w3+w4)2

]
. (55)

To proceed further we need the anticollinear limit of the
BFKL kernel. Using (27), setting k1 =w1, k2 =w2 and
requiring that |q1| � |w1|, |w2| we obtain

K =−g2Nc2w1 ·w2 . (56)

As already mentioned before we are interested in the maxi-
mal power of logarithms in the momentum scale; this leads
to the particular momentum configuration in which the
momentum transfer across the BFKL pomerons in the sub-
systems (12) and (34) is non-zero (note that below the

Fig. 7. Momentum assignments at the lower TPV

vertex we are still in the forward direction). We setw1 = p,
w2 =−p− r,w3 = q andw4 =−q+ r. In order to obtain,
after convoluting with BFKL kernels in the subsystems
(12) and (34), logarithmic contributions, we have to con-
sider the following momentum-ordered configurations.

• The configuration where |r| � |p| � |q|. BFKL kernels
and propagators are of the form

Ncg
22p ·r , −Ncg

22q ·r (57)

and

1

p2r2
,

1

q2r2
, (58)

respectively. In order to render all transverse momen-
tum integrations (in p, q, and in r) logarithmic, we need,
from the TVP, terms proportional to p·q

p2q2
: they are ob-

tained from the first term in (55):

V
r{a′},{b},τ=−2
LONc

(p,−p− r,q,−q+ r)

=−δa
′
1,a
′
2δb1,b2δb3,b4

√
2π

N2c −1
g4w4

p ·q

p2q2
. (59)

Combining these expressions and performing the inte-
grals we obtain

(K1K2)⊗V
r{a′},{b},τ=−2
LONc

= δa
′
1,a
′
2δb1,b2δb3,b4

√
2π

N2c −1
N2c

×
g8

8(2π)3
w4

3!

(
ln
w20
w2

)3
,

(60)

where |w0| is the momentum at the upper end of the
BFKL kernels, specified by the condition that it should
be smaller than the momentum scales |l| and |m| that
were considered in the collinear limit of the upper TPV.
Convoluting this expression with the impact factor

φ{b′}(w) = δ
b′1b
′
2
2

5
C
Q20
w2
ln
Q20
w2

below the vertex yields

(K1K2)⊗V
r{a′},{b},τ=−2
LONc

⊗φ{a′}

= δb1,b2δb3,b4
√
2πN2c

2

5
C
α4s
2π

Q20
4!

(
ln
w20
Q20

)4
. (61)

Here, in order to get the logarithmic contribution, we
took in (35) the next-to-leading term in the anticollinear
expansion of φ. In the configuration |r| � |q| � |p| the
same result is obtained.

• Repeating a similar analysis in the case when |q| �
|p| � |r|, we find from the last term on the r.h.s. of (55)

(K1K2)⊗V
r{a′},{b},τ=−2
LONc

⊗φ{a′}

= δb1,b2δb3,b4
√
2πN2c

2

5
C
2α4s
π

Q20
4!

(
ln
w20
Q20

)4
.

(62)
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The same contribution is obtained from the region |p| �
|q| � |r|.

• Finally, there are the regions |q| � |r| � |p| and |p| �
|r| � |q|. For the first case we use the first term in the
second line of (55) and obtain

(K1K2)⊗V
r{a′},{b},τ=−2
LONc

⊗φ{a′}

= δb1,b2δb3,b4
√
2πN2c

2

5
C
α4s
π

Q20
4!

(
ln
w20
Q20

)4
. (63)

The second region gives the same contribution.

4.2 Virtual parts

Let us now analyze the contribution coming from the vir-
tual parts of the vertex in the anticollinear limit. Again,
we are looking for the maximal power of logarithms. We
begin with the region |r| � |p|, |q|. Using (2) and (30)
for the virtual parts of the TPV, (57) for the BFKL ker-
nel, (58) for the propagators above the vertex, and (35)
for the lower impact factor, we immediately see that none
of the G2 functions allows for three logarithmic integrals.
The same observation holds for the regions |q| � |r| �
|p| and |p| � |r| � |q|. We are then left with the region
|p|, |q| � |r|. From the BFKL kernels and from the propa-
gators we find the denominators 1/p2 ·1/q2, and we there-
fore need the factor 1/r2 from the propagators below the
TPV. They can come only from the first term in the func-
tion G2(1+2, 3, 4):

g2G2(1+2, 3, 4) = αs
w4

2π

(
ln

w23
(w3+w4)2

δ(w+w3+w4)

+ ln
w23
w24
δ(w+w4)

)
, (64)

and from analogous terms inG2(1+2, 3, 4),G2(1, 2, 3+4),
G2(2, 1, 3+4). Convoluting these G2 functions with the
BFKL kernels and with the impact factor, and setting the
lowest momentum scale equal to Q20, we find

(K1K2)⊗V
vl{a′},{b}
LONc

⊗φ{a′}

=−δb1,b2δb3,b4
√
2πN2c

2

5
C
α4s
π

Q20
2

(
ln
w20
Q20

)4
. (65)

Let us briefly summarize our results for the large-Nc
limit, before we continue the finite Nc analysis. Our goal
was to find those terms of the twist expansion of the TPV
that after convolution with the BFKL kernel, would gener-
ate the maximal possible power of the transverse momen-
tum logarithms. In the collinear case (upper TPV), we had
to restrict the BFKL ladders below the TPV to the forward
direction, and we therefore expected to find, from the m
and l integrations, two logarithms. After the convolution
with the upper impact factor, a third logarithm should ap-
pear. What we found is that the coefficient of this maximal
number of logarithms vanishes, both for the connected and

for the disconnected parts of the TPV. In the anticollinear
case we had to include the integral over the momentum
transfer across the first BFKL kernel. After convoluting
these integrals with the lower impact factor, we expect four
logarithms. In fact, we found these logarithmic contribu-
tions, both in the real and in the virtual part of the TPV,
and they came from different regions of the ordered trans-
verse momenta.
This completes our twist-4 analysis of the one-loop

pomeron selfenergy of the BFKL pomeron (Fig. 2b).
We have found that the upper TPV vanishes at the
twist-4 point, whereas the lower one provides non-zero
contributions.

5 Finite Nc

5.1 The collinear limit

In this section we are going to investigate contributions to
the vertex in (17) that are suppressed in the largeNc limit.
Repeating our analysis of the previous sections we obtain
for the first subleading piece

Vr{a
′},{b}

subNc
(1, 3, 2, 4)τ=4

= δa
′
1a
′
2δb1,b2δb3,b4

√
2π

(
N2c −1

)2 g
4k2

×
4(−k1 ·k3k2 ·k4+k1 ·k2k3 ·k4+k1 ·k4k2 ·k3)

k4
.

(66)

Substituting k1 = l, k2 =−l, k3 =m, k4 =−m, we obtain

Vr{a
′},{b}

subNc
(l,m,−l,−m)τ=4= δa

′
1a
′
2δb1,b2δb3,b4

√
2π

(
N2c −1

)2

× g4k2
4l2m2

k4
. (67)

The convolution with the two BFKL kernels gives

Vr{a
′},{b},τ=4

subNc
⊗ (K1K2) = δ

a′1a
′
2δb1,b2δb3,b4

√
2π

(
N2c −1

)2N
2
c

×
4g8

(2π)4
k40
k2

(
ln
k2

k20

)2
. (68)

Convolution with the impact factor gives:

φ{a′}⊗V
r{a′},{b},τ=4
subNc

⊗ (K1K2) =

√
2π

N2c −1
N2c
2

5
C
8α4s
π2
k40
Q41

×
1

3

(
ln
Q21
k20

)3
. (69)

The same result holds for the second subleading part.
For the virtual corrections to the TVP the situation is

the same as for the leading-Nc part: by simply inspecting
the powers of the transverse momenta, we find that the
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integrations overm and l are not logarithmic, i.e. they can-
not generate the maximal power of logarithms.

5.2 The anticollinear limit

Here our starting expression for the real part of the TPV
can be taken directly from the r.h.s. of (55), by inter-
changing w2 and w3. For the first non-leading piece we
have

Vr{a
′},{b}

subNc
(w1,w3,w2,w4)

τ=−2

= δa
′
1,a
′
2δb1,b2δb3,b4

√
2π

(
N2c −1

)2 g
4w4

×

[
−
w1 ·w2
w21w

2
2

−
w2 ·w3
w22w

2
3

−
w1 ·w4
w21w

2
4

−
w3 ·w4
w23w

2
4

−
w1 · (w1+w3)

w21(w1+w3)
2
−
w3 · (w1+w3)

w23(w1+w3)
2
−
w2 · (w2+w4)

w22(w2+w4)
2

−
w4 · (w2+w4)

w24(w2+w4)
2
−
(w1+w3) · (w2+w4)

(w1+w3)2(w2+w4)2

]
. (70)

The analysis is analogous to the leading-Nc case. In de-
tail we find the following.

• For |r| � |p| � |q| the logarithmic contribution comes,
on the r.h.s. of (70), from the second term of the second
line. We obtain

(K1K2)⊗V
r{a′},{b}
subNc

⊗φ{a′} = δ
b1,b2δb3,b4

√
2π

N2c −1
N2c

×
2

5
C
α4s
2π

Q20
4!

(
ln
w20
Q20

)4
.

(71)

The same result holds for the region |r| � |q| � |p|,
taking in (70) the first term of the second line. This
result is same as in (61), except for the suppression
by N2c −1.• |q| � |r| � |p|: here we use the first term on the r.h.s.
of (70) and obtain

(K1K2)⊗V
r{a′},{b}
subNc

⊗φ{a′} = δ
b1,b2δb3,b4

√
2π

N2c −1
N2c

×
2

5
C
α4s
π

Q20
4!

(
ln
w20
Q20

)4
.

(72)

The region |p| � |r| � |q| gives the same result. It coin-
cides with (63), but is suppressed byN2c −1.

The regions |q| � |p| � |r| and |p| � |q| � |r| do not con-
tribute to the maximal number of logarithms.
Finally we come to the virtual parts of the Nc-sup-

pressed parts of the TPV. Repeating the analysis, carried
out for the virtual part of the leading-Nc piece, we find no
contribution to the maximal number of logarithms. The fi-
nal result for the anticollinear limit of the Nc-suppressed
part of the TPV, therefore, is given by the real piece
alone.

6 Non-linear evolution equations

6.1 General evolution equations

Let us nowmake some use of the TPV in QCD reggeon field
theory. To be definite let us consider deep inelastic scatter-
ing on a hadronic target (a single proton or a nucleus). We
define color singlet t-channel states of n reggeized gluons (n
even) in the Heisenberg picture, which are labeled by color
and momentum degrees of freedom:

|n〉=
1
√
n!
a†a1(k1) . . . a

†
an(kn)|0〉

= |k1, . . . ,kn; a1, . . . , an〉 . (73)

The normalization is
[
aa(k), a

†
a′
(k′)
]
= (2π)3k2δ(k−k′)δaa′ (74)

and

〈n|n′〉= δn′n
1

n′!

∑

σ(n)

n′∏

i=1

(
(2π)3δ(ki−k

′
i)k
2
i δ
aia
′
i
)
, (75)

where the sum extends over the permutations of the outgo-
ing gluons. The unity operator is given by

∑

n

|n〉〈n|=
∞∑

n

n∏

i=1

∫
d2ki
(2π3)

1

k2i
|k1, . . . ,kn; a1, . . . , an〉

× 〈k1, . . . ,kn; a1, . . . , an| ,
(76)

where the summation on the left-hand side includes also
the integration over the continuous degrees of freedom.
We assume that the target state, at some initial rapid-

ity, can be written as a superposition:

|p〉=
∞∑

n=1

cn|n〉 . (77)

The rapidity evolution of this (color singlet) state is givenby

eyH |p〉= |p(y)〉 . (78)

The Hamiltonian consists of several pieces (Figs. 8–10):

H =H2→2+H2→4+H4→2+H2→6+H6→2+ . . . (79)

The first term denotes the case where, inside the n gluon
state, only one pair of gluons interacts, in the second term
one pair splits into four gluons etc. The matrix elements of
H2→2 are expressed in terms of the BFKL Hamiltonian:

〈n′|H2→2|n〉= δnn′
n′∑

i>j=1

[
faia′ic

fca′
j
aj

×
{
K2→2(ki,kj ;k

′
i,k
′
j)(2π)

3δ(ki+kj−k
′
i−k

′
j)

+ (ω(ki)+ω(kj))k
2
ik
2
j δ(ki−k

′
i)δ(kj −k

′
j)
}

+(k′i↔ k
′
j , a

′
i↔ a

′
j)
]

×
1

(n′−2)!

∑

σ(n′−2)

n′∏

l�=i,j

(2π)3δ(kl−k
′
l)δala′l

, (80)
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Fig. 8.Matrix element given by (80)

where the second term in the square brackets stands for the
symmetrization of the outgoing two-gluon state. This ker-
nel corresponds to the BKP interaction in the color singlet
state. All the other terms are presently known only for the
special case, where not only the total n gluon system but
also the interacting subsystem belongs to the color singlet
representation.
In particular, the second term contains the 2→ 4 tran-

sition vertex:

〈n′|H2→4|n〉= δnn′+2

×
n′∑

s>t=1

n∑

i>j>l>r=1

[
Va
′
ia
′
ja
′
la
′
r ;as,at(k′i,k

′
j ,k

′
l,k
′
r;ks,kt)

+ (ks↔ kt, as↔ at)
]

× (2π)3δ(ki+kj+kl+kr−ki−kj)
1

(n−4)!

×
∑

σ(n−4)

n∏

p�=i,j,l,r

(2π)3δ(kp−k
′
p)δ
apa

′
p , (81)

whereas the third term allows for four gluons to fuse into
two gluons:

〈n′|H4→2|n〉= δnn′−2

×
n∑

s>t

n′∑

i>j>l>r=1

[
Vasat;a

′
ia
′
ja
′
la
′
r (k′s,k

′
t;ki,kj ,kl,kr)

+ (k′s↔ k
′
t, a
′
s↔ a

′
t)
]

× (2π)3δ(ki+kj+kl+kr−k
′
s−k

′
t)

1

(n′−4)!

×
∑

σ(n′−4)

n′∏

p�=i,j,l,r

(2π)3δ(kp−k
′
p)δ
apa

′
p . (82)

The next two terms on the r.h.s. of (79) belong to the
pomeron→ two odderon vertex [30] (restricted to the color
singlet channel) and to its inverse, respectively. They will
not be discussed further. Higher order kernels (indicated
by the dots) have not been computed yet. Let us define the
n reggeon wave function component of the target at rapid-
ity y in the following way:

ψ{ai}n (y,k1,k2, . . . ,kn) = 〈n|e
yH |p〉 . (83)

Upon differentiation with respect to y we obtain

∂ψ
{ai}
n

∂y
= 〈n|HeyH |p〉=

∑

n′

〈n|H|n′〉〈n′|eyH |p〉

=
∑

n′

〈n|H|n′〉ψ
{a′i}
n′
. (84)

This defines an infinite set of coupled equations. It cannot
be closed because, for instance, the equation for the two-
gluon wave function receives contributions coming from
the four-gluon wave function:

∂ψ
a1a2
2

∂y
= 〈2|H2→2|2〉ψ

a1a2
2 −〈2|H4→2|4〉ψ

a1a2
4 (85)

(the term proportional to (81) vanishes since it requires
zero gluons in the initial state).

6.2 The non-linear equation for the unintegrated
gluon density

In order to reach further simplification, we take the large-
Nc limit. In practice this implies that we group the n
gluons into n/2 color singlet pairs (pomerons) and asso-
ciate with each pair a color singlet projector: this projector
acts on the color tensors of the interaction Hamiltonians
and leads to color weight factors of the interaction kernels.

Fig. 9. Matrix element given by (81)

Fig. 10.Matrix element given by (82)
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In particular, in the 2→ 2 Hamiltonian the color tensor
faia′ic

fca′
j
aj
is replaced by the color factor −Nc, and in the

2→ 4 Hamiltonian,H2→4, the 2→ 4 vertex V
asat;a

′
ia
′
ja
′
ma
′
n

reduces to the function V (k′i,k
′
j ,k

′
m,k

′
n) (cf. (1)). The evo-

lution equations have to be reformulated in terms of N
states of gluon pairs: each pair carries two momentum
variables, q and k: q denotes the total transverse momen-
tum of the two-gluon state, and k and q−k are the mo-
menta of the two constituent gluons. The state consisting
of N = n/2 such pairs is defined by

|N〉=
1
√
N !
A†(q1,k1) . . . A

†(qN ,kN )|0〉

= |(q1,k1), . . . , (qN ,kN )〉 (86)

(we use capital letters to distinguish the pair basis from the
reggeon basis). The normalization follows from

[A(q,k), A†(q′,k′)] = (2π)6k2(q−k)2δ(q−q′)δ(k−k′) ,
(87)

in analogy with the reggeon states. We write the Hamilto-
nian as

H =H1→1+H1→2+H2→1 , (88)

where

〈1|H1→1|1〉

=Nc
{
K2→2(ki,kj ;k

′
i,k
′
j)(2π)

3δ(ki+kj−k
′
i−k

′
j)

+ (ω(ki)+ω(kj))k
2
ik
2
j δ(ki−k

′
i)δ(kj −k

′
j)
}
+(k′i↔ k

′
j)

(89)

and

〈1|H1→2|2〉= [V (k
′
i,k
′
j ,k

′
l,k
′
r;ks,kt)+ (ks↔ kt, as↔ at)]

× (2π)3δ(ki+kj+kl+kr−ki−kj) . (90)

The amplitudes ΨN in this basis of gluon pairs are defined
in analogy with (83).
Next we invoke the mean field approximation and make

the following factorizing ansatz:

Ψ2(y,k1,q1−k1,k2,q2−k2)

= Ψ1(y,k1,q1−k1)Ψ1(y,k2,q2−k2) . (91)

This ansatz can be justified for a large nuclear target. It
allows one to obtain a closed equation for Ψ1:

∂Ψ1

∂y
= 〈1|H1→1|1〉Ψ1−

1
√
2
〈1|H2→1|2〉Ψ1Ψ1 . (92)

To obtain the BK equation for the unintegrated gluon
density let us define the off-diagonal unintegrated gluon
density via

F(y,k1,k2) = Ψ1(y,k1,k2) = 〈1|e
−yH |p〉 . (93)

Using (80), (81), (89), (92) and (93) we obtain the non-
linear evolution equation:

∂F(x,q,k)

∂ ln 1/x
=

∫
d2l

(2π)3
K(l,q− l;k,q−k)

F(x,q, l)

l2(q− l)2

−π

∫
d2r

d2l

(2π)3
d2m

(2π)3

×V
(
k,−k+q; l,−l−

q

2
+ r,m,−m−

q

2
− r
)

×
F
(
x, q2 + r, l

)

l2
(
−l+ q2 + r

)2
F
(
x, q2 − r,m

)

m2
(
−m+ q2 − r

)2 . (94)

The momenta entering the vertex from below are labeled
by k′1 = l, k

′
2 =−l−q/2+r, k

′
3 =m and k

′
4 =−m−q/2−

r. The variable r stands for the loop momentum. In [17]
it has been shown that this equation coincides with the
Balitsky–Kovchegov equation, provided the solutions F
belong to the Möbius class of functions (i.e. the Fourier
transform vanishes when the two coordinates become
identical). We make the assumption that the coupling
to the proton goes via the form factor (with momentum
transfer r)

F (r, R) =
e
−r2R2

4

2π
(95)

(where R has the meaning of the proton radius), and for
F(x, r,k) we make the ansatz

F(x, r,k) = F(x,k)F (r, R) . (96)

Then the integration over r on the r.h.s. of (94) will be
restricted to small values r2 ≤ 1/R2. Now we restrict our-
selves to zero momentum transfer, q = 0, which corres-
ponds to the integration over the impact parameter, and,
as a further approximation, we put r = 0 at the TPV: in
the dipole language, this means that the typical dipole size
is assumed to be much smaller than the impact parame-
ter b. This allows one to carry out the r integral, and one
easily sees that the function F(x,k) satisfies the somewhat
simpler equation

∂F(x,k)

∂ ln 1/x
=

∫
d2l

(2π)3
K(l,−l;k,−k)

F(x, l)

l4

−π
1

2πR2

∫
d2l

(2π)3
d2m

(2π)3
V (k,−k; l,−l,m,−m)

×
F(x, l)

l4
F(x,m)

m4
. (97)

In the next step we perform the integrations over the azi-
muthal angles of l,m, and k. Denoting the integrated func-
tion F(x,k) by f(x,k2):

f(x,k2) =
1

2π

∫
dφF(x,k) , (98)

with

xg(x,k2) =

∫ k2 dk′2

k′2
f(x,k′2) , (99)
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and using our result (51) for the angular averaged TPV,
the non-linear equation reads [14, 15]

∂f(x,k2)

∂ ln 1/x
=
Ncαs

π
k2

×

∫ ∞

0

dl2

l2

[
f(x, l2)−f(x,k2)

|k2− l2|
+
f(x,k2)
√
(4l4+k4)

]

−
α2s
2R2

{
2k2
[∫ ∞

k2

dl2

l4
f(x, l2)

]2

+2f(x,k2)

∫ ∞

k2

dl2

l4
ln

(
l2

k2

)
f(x, l2)

}
.

(100)

When applying this equation to the scattering of a vir-
tual photon on a nucleus we return to the question raised
at the end of the introduction, the question of the most
dominant gluon configurations. In the DGLAP approach
one has a strong ordering in momentum, i.e. the virtuali-
ties of the gluons closer to the photon are larger than those
closer to the target. In the non-linear evolution equation
one then would expect that, at the kernel of the non-linear
term, the upper momenta, k, should be larger than the
lower ones, l and m. However, making use of our results
for the collinear limit of the TVP and of the structure of
the angular averaged vertex, we arrive at the somewhat
surprising conclusion that the momenta are ordered in the
opposite direction. In more physical terms, the recombina-
tion of two smaller gluons ends up in a larger gluon. This
suppression of softer gluons below the non-linear term may
explain why, in numerical solutions of the angular averaged
BK equation for the unintegrated gluon [15], the BFKL dif-
fusion into the infrared region is absent.

7 Comparison with other equations

As we have mentioned before, the non-linear equation (94)
coincides with the Balitsky–Kovchegov equation. In [17],
the Fourier transform of (94) has been computed, and it
has been shown that, in the class of Möbius functions, it
agrees with the BK equation.
Alternatively, one can start [14–16] from the Balitsky–

Kovchegov equation for the dipole scattering amplitude in
coordinate space and compute the Fourier transform to
momentum space. The connection between the momentum
space gluon distribution F(x,q,k) and the dipole scatter-
ing amplitude is:

F(x,q,k) =
Nc

4αsπ2
k2(k−q)2∇2k

∫
d2x0
2π

∫
d2x1
2π

× eik·x0ei(q−k)·x1
N(x01,b, x)

x201
, (101)

where x01 = x0−x1, and b= (x1+x2)/2 is the impact pa-
rameter. Our steps of approximation described after (94)
are equivalent to the factorization ansatz

N(x01,b, x) =N(x01, x)S(b) (102)

and to the assumption that, in the Balitsky–Kovchegov
equation, all dipole sizes are much smaller than the impact
parameter b. With these approximations one arrives, after
angular averaging and integration over the impact param-
eter b, at the non-linear equation (100).
Returning, once more, to the issue of the twist expan-

sion, we have to conclude that the non-linear BK equation,
when restricting to solutions with conformal spin n= 0, re-
ceives all its contributions from ‘anticollinear’ terms. This,
in connection with corrections to the single-ladder approx-
imation at small x, makes the usefulness of a twist expan-
sion somewhat doubtful.
Let us finally comment on other versions of the non-

linear evolution equations. The first non-linear evolution
equation, which was a milestone in the physics of satu-
ration, is the Gribov–Levin–Ryskin, Mueller–Qiu (GLR–
MQ) equation [33, 34] ((2.41) in [33], and (30) in [34]),
obtained in the double-logarithmic approximation:

∂2xg(x,k2)

∂ ln(1/x)∂ lnk2
=
αsNc

π
xg(x,k2)−C

α2s
k2R2

[xg(x,k2)]2

(103)

(the constant C is not the same in the two papers; how-
ever, for our discussion this is not essential). This equation
can be rewritten in terms of the unintegrated gluon density
f(x,k2):

∂f(x,k2)

∂ ln 1/x
=
Ncαs

π

∫ k2

k20

dl2

l2
f(x, l2)

−C
α2s
k2R2

[ ∫ k2

k20

dl2

l2
f(x, l2)

]2
. (104)

The linear term coincides with the BFKL kernel in the
collinear approximation. The non-linear term should be in-
terpreted as the TPV at the collinear limit. Its physical in-
terpretation would support the strong ordering (collinear)
picture discussed at the end of the previous section: mo-
menta above (k2) are larger than below (k′2) the non-linear
interaction. Our analysis, however, does not agree with this
form of the non-linear term. The structure of the integrals
is totally different. In particular, we have come to the con-
clusion that, after angular averaging, the TPV does not
contribute to the collinear limit.
The GLR paper [33] also presents another non-linear

equation (see (2.108)), derived from summing up, at small
x, single logs of the fan diagrams. It is written directly for
the unintegrated gluon density which, in the GLR nota-
tion, differs from our definition (99):

xg(x,k2) =

∫ k2
dk′2Φ(x,k′2) . (105)

This equation is an attempt to generalize the BFKL equa-
tion to the physics of dense systems, and its form is quite
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close to our equation (100):

∂Φ(x,k2)

∂ ln 1/x
=
Ncαs

π

×

∫ ∞

0

dl2

l2

[
Φ(x, l2)−Φ(x,k2)

|l2−k2|
−
Φ(x,k2)
√
4l4+k4

]

− gTPV
1

4πR2

(
αs

4π

)2
Φ2(x,k2) , (106)

where gTPV is the local approximation of the following
TPV vertex:

V ⊗ (Φ(x, l2)Φ(x,m2)) =

∫
dm2

l2
dl2

l2
αs(m

2)αs(l
2)

×Φ(x,m2)Φ(x, l2)θ(l2−k2)θ(m2−k2) . (107)

This vertex contains the same θ functions as in (51), and
it thus supports the physical picture described at the end
of the previous section. On the other hand, the detailed
analytic form of the vertex is different from (100); in par-
ticular, it does not contain the disconnected pieces, which,
in the original derivation of the 2→ 4 vertex, can be traced
back to the reggeization of the gluon (there are also differ-
ences in the prefactors).
Despite these differences in the detailed form of the

non-linear equations it may very well be that, as far as the
gross features of saturation are concerned, the qualitative
behavior of the solutions will be similar. It would be inter-
esting to study this in more detail.

8 Conclusions

In this paper we have investigated the momentum space
triple pomeron vertex. In particular, we have studied its
collinear and anticollinear limits. This question arises nat-
urally if one studies non-linear corrections to the linear
BFKL evolution in deep inelastic scattering at small x:
one expects that, at least on average, transverse momenta
decrease when moving from the photon to the proton. In
a first step one is then led to consider the limit of strong
ordering. Restricting ourselves to solutions with conformal
spin zero, we have shown, for the simplest example of a fan
diagram with one triple pomeron vertex in the large-Nc
limit, that there is no contribution from the configuration
of strongly ordered gluons. Beyond the large-Nc limit such
contributions exist.
We have also constructed a set of evolution equations

for the interaction of a photon with a nuclear target, which,
in the mean field approximation, reduces to a non-linear
evolution equation for the skewed unintegrated gluon dens-
ity, which, in the forward region, agrees with the equa-
tion obtained in [14, 15]. We have also compared our mo-
mentum space expression for the non-linear evolution ker-
nel with various other versions discussed in the literature.
We agree with the BK equation, but we find disagree-
ment with other earlier versions of non-linear evolution
equations.

Interpreting our results in terms of twist, we have
shown that the BK-equation, when restricted to solutions
with conformal spin zero, receives all its contributions from
‘anticollinear’ configurations, quite in contrast to the ex-
pected ordering of transverse momenta.
We also hope that our analysis will help to analyze fur-

ther the contributions of pomeron loops.
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